I, \Web

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Cbject Onented
Progranmng
Language Using CH

1|Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

Introduction to C++;

C++ was developed by Bjarne Stroustrup in 1978 at Bell Labs, C++ is an extension to the C
language. C++ is a general-purpose programming language. C++ introduces Object-
Oriented Programming (OOP’s), OOP’s concepts not present in C. C++ supports the
four primary features of OOP: encapsulation, polymorphism, abstraction, and

inheritance.

In name C++, “++” is the C increment operator.

_— 10101101
11010101
0001010

Source Code Compile Machine Code

Applications of C++:

C++ finds varied usage in applications such as:

e Operating Systems & Systems Programming. e.g. Linux-based OS (Ubuntu etc.)
e Browsers (Chrome & Firefox)

o Graphics & Game engines (Photoshop, Blender, Unreal-Engine)

o Database Engines (MySQL, MongoDB, Redis etc.)

e Cloud/Distributed Systems

There are many C++ compilers available which you can use to compile and run C++

program:

e Apple C++. Xcode

o Bloodshed Dev-C++

e Clang C++

e Cygwin (GNU C++)

e Mentor Graphics

e« MINGW - "Minimalist GNU for Windows"
o GNU GCC source

2|Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

e IBMC++

e Intel C++

e Microsoft Visual C++

o Oracle C++

e HPC++

e TURBO C++

e BORLAND C++
Popular IDE's include Code::Blocks, Eclipse, and Visual Studio. These are all free, and they
can be used to both edit and debug C++ code. Online Compiler Web-based IDE's can work

as well, but functionality is limited.

Language:
Characters > Tokens (ldentifiers/Constant/Reserved Words) = Instructions (Statements) -
Program - Software.

Features of OOP'S

e Class/ Object

e Encapsulation

e Abstraction

e Data hiding

e Inheritance (Is-A Relationship)

e Polymorphism
Class:
A class in an encapsulated entity which binds the properties and behaviour into a single unit.

Or

A class in an encapsulated entity which binds the data-member and member-function into a
single unit is called class.

A class is user define data type. A C++ class is like a blueprint for an object. By using class
keyword we can define a class.

3|Page MOBILE: +91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

A class is defined in C++ using keyword class followed by the name of class. The body of
class is defined inside the curly brackets and terminated by a semicolon at the end.
Syntax:
class <class-name>
{
Properityl or data-memberl or variablel,

Properity2 or data-member2 or variable2;

Behaviourl or member-functionl or functionl1();

Behaviourl or member-functionl or functionl();

keyword user-defined name

| /

cla?s CIassNamg

{ Access specifier: //can be private public or protected
Data members; [/ Variables to be used
Member Functions() {} //Methods to access data members

}; /[Class name ends with a semicolon

Example:

class Student

{
public:

int rollno;

4|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

float fees;
public:

void setDetail()

{
cout<<"Enter the rollno and fees";
¥
void getDetail()
{
cout<<rollno<<fees;
}
b
Object:

Obiject is a real world entity which takes some space in computer memory (heap memory).
An Object is an instance of a Class. When a class is defined, no memory is allocated but
when it is instantiated (i.e. an object is created) memory is allocated.

Student s1,s2,s3;

How to Access Class members:

By using dot operator (.) and with the help of reference variable we can access class
members.

sl.name="abc";
sl.rollno=101;
sl.getDetail();

s2.setDetail();

5|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

name="amit"
rollno=101

name="sachin"
rollno=102

name="kapil"
rolino=103

S1 S2

Encapsulation:

Encapsulation is the process to binds the data member (variables) and member function
(function or method) into a single unit is called encapsulation.
Class is an example of encapsulation in which we binds the variables and functions.

Example:

class Student
{
public:
int rollno;
float fees;
public:
void setDetail()
{

cout<<"Enter the rollno and fees";

}
void getDetail()

{

cout<<rollno<<fees;

6|Page MOBILE: +91-7500700886

Clﬂlx Web

SOFTWARE TRAINING AND DEVELOPMENT

Abstraction:

In Abstraction highlight the set of services and hide the internal implementation of an

application is called abstraction.
Example:

ATM Machine, in ATM Screen we show set of services (like withDraw, mini stm, bal query

etc) and hide the internal implementation (How ATM machine work).
Data hiding:

Hide the data from the outside side world and only authorized person can access that data. So

the process of hiding data from outside world is known as data hiding.
Example:

Email Account, only authorized Person (Which has user name and Password) can access your

email.

So we can hide the data from outside world by declare variables as private.
Note:

Encapsulation = Abstraction + data Hiding.

Types of Variable:

There are three types of variable.

1) Instance variable or object level variable

2) Static variable or class level variable.

3) Local variable.

1) Instance variable or object level variable:

Instance variable are loaded into the memory when we create the object of that class.
For every object separate copy of instance variable will be created.

They are declared inside the class but outside the function, constructor or block without

static keyword.

7|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

By default value of instance variable is Garbage.
class Employee
{

public:

int eid; =

char ename[20] ;— ; Instance Variable

public:
void setDetail()
{
cout<<"Enter the eid ename and esal";
cin>>eid>>ename>>esal;

}
void getDetail()

{

cout<<eid<<ename<<esal;

}

int main()

{
Employee €;
cout<<’Enter the id”;
cin>>e.eid;
cout<<’Enter the Ename: ”;
cin>>e.ename;

cout<<"Enter the salary”:

8|Page MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

cin>>e.esal;
cout<<e.eid<<” ”<<e.ename<<” ’<<e.esal;

ks

Note: We can’t access instance variable directly. They can access with reference variable and
by using dot (.) operator.

static variable:

e static variable are loaded into the memory at the time of class load. So they are loaded
into the memory firstly.

e For every object a common copy will be created if any object changes the value of
static variable then these changes will be reflect to every object.

e They are declared inside class and function, constructor or block with static keyword.

e By default value of static variable is zero.

Static variables in a Function:
We can declare a static variable inside the function. If the function is called multiple times,
space for the static variable is allocated only once and the value of variable in the previous
call gets carried through the next function call.
#include <iostream.h>
#include <string.h>
using namespace std;
void demo()
{
static int count;
cout << count <<"";
count++;

¥

int main()

9|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

for (int i1=0; i<5; i++)
demo();
return O;

¥
OUTPUT: 01234

Static variables in a class:

We can declare a static variable inside the class but outside the function, constructor and

block. Every object share the static variables if any object change the value of static

variable than changes will be reflect to every object.

Note: we can access static variable by using reference variable, with class name and

directly.

Example:
#include <iostream>
#include <string>
using namespace std;
class Test
{

public:

static int i;
Y
int Test::i =1,
int main()
{
Test obj;

cout << obj.i;

10| Page

MOBILE:

+91-7500700886

CloudxWeb

3) Local Variable:

Local variable are declared inside the function, constructor, block. For temporary requirement
we declare local variable in a block. The Scope of Local variables within a block where they

are declare. By default value of local variable is Garbage.

<iostream.h>

using namespace std;

(int a, int b){

return a * b;

0O A
int x = 3, y = 5;

int z;

= multiply(x, y);

cout << z << endl;

return 0;

GFG
/,E,tati: int aj Static Variable
int b; }— Instance Variable
----- Qgc()
(_int ;)— Local Variable

11| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Constructor:

Constructor is a special function which names same as class name. Constructor is used to
initialize an Object or initialize instance variable. Constructor calls automatically when we
create the object of that class.

Example:
class Test
{

public:

Test() // constructor

{
cout<<"Hello";
}
h
Example:
class Test
{
public:
int x,y;
Test(int a,int b)
{
X=a;
y=b;
}
h

Properties of Constructor:

1) Constructor must be declared in public section only.

12| Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

2) Constructor must be executing when we create the object of that class.

3) Constructor name should be same as class name.

4) Constructor does not return any value even void.

5) Constructor can't be inherited.

6) Constructor can't be virtual.

7) Every class must contain at least one constructor.

Note:

Every class must contain at least one constructor. If Programmer not define any constructor

inside the class then compiler will create a default constructor inside the class. If programmer

define a constructor inside the class then compiler not create default constructor.
Types of constructor:

Three are three types of constructor.

1) No-arg constructor or default constructor

2) Argument constructor or parameterized constructor.

3) Copy Constructor

Note: Java support no-arg and parameterized constructor.
1) No-arg constructor or default constructor:

Such constructor which does not accept any parameter is called no-arg constructor.

class Test
{
public:
Test()
{
cout<<"Welcome";
}

13| Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

b
int main()
{
Test t1,t2,t3;
}

Note: If programmer not defines any constructor inside the class the compiler will
create no-argument constructor (default constructor).

2) Parameterized constructor:
Such constructor which accepts a list of parameter is called parameterized constructor.
class Test
{
public :
Test(int x, float y)

{

cout<<x+y;

Y
We can pass the initial value to the constructor in two ways.
a) By calling the constructor explicitly.
Test t=Test (10,10.5);
b) By calling the constructor implicitly.
Test t(10,10.5);
3) Copy Constructor:
Copy constructor is used to create a exactly same copy of an object.

Or

14| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Copy Constructor is used to initialize an Object to another Object.
Or
Such constructor which accept the address of an Object.
class Test
{
public:
int x;
inty;
public:
Test(int a, int b)
{
X=a;
y=b;
}
Test(Test &t)
{
X=t.X;

y=ty;

h

int main()

{
Test t1(10,20);
Testt2=tl or

Test t2(t1);

15|Page MOBILE: +91-7500700886

Clﬁjx Web

SOFTWARE TRAINING AND DEVELOPMENT

Note:

In the above Program we can copy one object content to another Object with the help of copy
constructor.

Java does not support copy constructor.
Constructor Overloading:
When we declare more than one constructor in class with different signature. This concept
IS known as constructor overloading.
class Test
{
int a,b;

Test() // no-argument constructor

{
cout<<"Welcome"<<endl;
}
Test(int x,int y) // Parameterized constructor
{
a=Xx;
b=y;
}
Test(int a,int b,int c) // Parameterized constructor
{
cout<<atb+c;
}

Constructor with default arguments:

16| Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

In C++ we can pass one or more variable with default value in a constructor. Such
constructor which accept default argument variable is called constructor with default
argument.

Example:
class Test
{
public:
Test(int X, int y=10)
{
cout<<x+y;
¥
Test(int x=10, inty, int z)

{

cout<<x+y+z;

Y
int main()
{
Test t(5);
Test t1(5,9);
}
Dynamic Constructor:
Dynamic constructor is used to allocate different-different size for each object according
to requirement. For Dynamic memory allocation we new keyword.
If we use new keyword in a constructor then that constructor is called dynamic constructor.
Example:

char *name;

17| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

name=new char[size];
Example:
int *x;

x=new int[10];

class Test
{
public:
int x;
char *name;
Test(int 1)
{
x=l;

name =new char[x+1];

h
int main()
{
Test t1(5), t2(6),t3(10);

Dynamic initialization of an Object:

class Test

{
public:

int x;

18|Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

float y;

Test(int a,float b)

{
X=3;
=b:
¥
b
int main()
{
Test t1;
int p;
float q;
cout<<"Enter the two variable";
cin>>p>>q;
t1=Test(p,q);
cout<<tl.p+tl.q;
}
Destructor:

A Destructor is a special function which name is same as class name but it will start with ~
tilde sign. As the name implies, it is used to destroy the object.

Properties of Destructor:
* 1t will call automatically when a block is completed or program is terminated.

* Destructor never takes any argument or not accepts any parameter. Only one type of
destructor is possible in c++. Which is used to destroy an object which is useless?

* Destructor is used to free the memory from the useless object.

* Destructor does not return any value even void.

19| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

* Destructor cannot be inherited.

* Destructor cannot be virtual.

* Destructor always declared in public section only.

class Test
{
public:
int x,int y;
Test(int a,int b)
{
X=a;
y=b;
¥
public:

~Test() // Destructor

{
cout<<"Object is Destroyed";
}
h
Example:

#include<conio.h>
#include<iostream.h>
class Test
{
public:
int x,y;

Test(int a,int b)

20| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"Object Created"<<endl;

X=a,

y=b;

}
public:
~Test()

{

cout<<"Object is Destroyed"<<endl<<endl;

j

int main()
{

Il clrscr();

Test t1(10,20),t2(100,200);
cout<<tl.x+tl.y<<endl;
getch();
return O;

}

Output:

Obiject Created

Obiject Created

30

Obiject is Destroyed

21| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Object is Destroyed

Example:
#include<conio.h>
#include<iostream.h>
class Test
{
public:
static int count;
public:
Test()
{
count++;
cout<<count<<" object is Created"<<endl;

}
~Test()

{

cout<<count<<"Obiject is Destroy"<<endl,

count--;

h
int Test::count;
int main()
{
clrscr();

Test t1,t2,13;

22|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

{
Test t4;
¥
{
Test t5;
¥
getch();
return 0;
}
Output:

1 object is Created
2 object is Created
3 object is Created
4 object is Created
4 object is Destroy
4 object is Created
4 object is Destroy
3 object is Destroy
2 object is Destroy

1 object is Destroy

Inheritance or is-a relationship or Derivation:
Inheritance is the important concept of OOP's.

When Child Class extends or inherits Parent class Properties (data member) and behaviour

23| Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

(member function) is called inheritance.
Inheritance is known as "is-a relationship".

Through inheritance Child class can access Parent class members(data variable & member
function)

Note:

1) The main Advantage of inheritance is reusability of Code.

2) Through inheritance we can save memory space as well as time.

Which class is inherited is called Parent class or Super class or Base class.

Which inherits the Parent class is called Child class or Sub class or Drived class.

class <Parent class>

{
data member;
+
member function();
h
class <Child> : visibility mode <Parent class>
{

data member;

+

member function();

24| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

There are three types of visibility mode (public private protected) it is also known as

access specifier.

Example:

class Parent

{
public:
int x,y;
public:
void m1()
{
¥
void m2()
{
¥
h
class Child : public Parent
{
public :
float a;
public :

25|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

void m3()

{
ki

Types of Inheritance:

There are 5 types of inheritance in C++.

1) Single level inheritance.
2) Multilevel inheritance.
3) Hierarchical inheritance.
4) Multiple inheritance.

5) Hybrid inheritance.

Note: Java support only single, multilevel and hierarchical.

1) Single level inheritance:

In inheritance only two classes are involved, one is Parent and another one is Child.

or Such a single child have only one Parent is called. single inheritance.

Example:

class Parent

{

26| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:

int x,y;
public:

void m1()

{

cout<<x+y<<end;

class Child : public Parent
{
public:
int a;
public:
void m2()

{

cout<<a,

Example:

#include<conio.h>
#include<iostream.h>

class Parent

{

27 | Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:

int x,y;
public:

void m1()

{

cout<<x+y<<endl;

h
class Child : public Parent
{
public:
int a;
public:
void m2()

{

cout<<a<<endl;

}
void m3()

{

cout<<a+x+y<<endl;

3
int main()

{

clrscr();

Parent p;

28| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Child c;
p.x=10;
p.y=20;
c.a=30;
€.x=100;
c.y=200;
p.m1();
c.m1();
¢.m2();
¢.m3();
getch();

return O;

300
30

330

2) Multilevel inheritance:

In Multilevel inheritance Parent Class inherts GrandParent class, Child class inherits Parent

class and soon. This type of inheritance is known as multilevel inheritance.

class GrandParent

29| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:

int x;
public:

void m1()

{

cout<<x;

)2

class Parent : public GrandParent

{
public:
inty;
public:
void m2()

{

cout<<x+y<<endl;

h
class Child : public Parent
{
public :
int z;
public:
void m3()

{

30| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<x+y+z;

Example:
#include<conio.h>
#include<iostream.h>
class GrandParent
{
public:
int x;
public:
void m1()

{

cout<<x<<endl;

h
class Parent : public GrandParent
{
public:
inty;
public:
void m2()

{

cout<<x+y<<endl;

31| Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

b
class Child : public Parent
{
public :
int z;
public:
void m3()

{

cout<<x+y+z<<endl;

b

int main()

{
clrscr();
GrandParent gp;
Parent p;
Child c;

gp.x=10;

p.x=100;
p.y=200;

€.X=1000;
¢.y=2000;
€.z=3000;

32| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

gp.m1();
p.m1();

p.m2();
¢.m1();

¢.m2();
c.m3();
getch();

return O;

100
300
1000
3000
6000

3) Hierarchical inheritance:

When One Parent have multiple childs or when multiple childs inherits a single parent is
called

Hierarchical inheritance.

Example:

#include<conio.h>

33|Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>
class Parent
{
public:
int x,y;
public:
void m1()

{

cout<<x+y<<endl;

b
class Childl : public Parent
{
public:
int a;
public:
void m2()

{

cout<<a+x+y<<endl;

3
class Child2 : public Parent

{
public:
int b;

public:

34| Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

void m3()
{

cout<<b+x+y<<endl;

h

int main()

{
Parent p;
Child1 c1;
Child2 c2;

clrscr();

p.x=100;

p.y=200;

c1.x=10;
cl.y=20;

cl.a=30;

€2.x=1000;
c2.y=2000;
¢2.b=3000;

p.m1();
cl.m2();

c2.m3();

35|Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

getch();

return o;

60
6000
Example:
#include<conio.h>
#include<iostream.h>
class Parent
{
public:
int x,y;
static int z;
public:
void m1()

{

cout<<x+y+z<<endl;

3
class Child1 : public Parent
{

36| Page

MOBILE:

+91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

public:

int a;
public:

void m2()

{

cout<<atx+y+z<<endl;

h
class Child2 : public Parent
{
public:
int b;
public:
void m3()

{

cout<<b+x+y+z<<endl;

h

int Parent::z;

int main()

{
Parent p;
Child1 c1;
Child2 c2;

clrscr();

37| Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

p.x=100;
p.y=200;
p.z=1,;

c1.x=10;
cl.y=20;
c1.a=30;

cl.z=2;

€2.x=1000;

c2.y=2000;

€2.b=3000;
€2.2=3;

p.m1();
cl.m2();

c2.m3();

cout<<p.z+cl.z+c2.z;

getch();

return O;

38| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

6003

4) Multiple Inheritance:

In multiple inheritance one child inherits multiple parents.
or

when Multiple parents have only one child, such type of inheritance is called multiple
inheritance.

Syntax:

class <Child Name> : visibility mode <Parentl Name>, Visibility Mode <Parent2 Name>,.....

{

data menber and member functions.

#include<conio.h>
#include<iostream.h>
class Parentl
{
public:
int X;
public:

void m1()

39| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

{

cout<<x<<endl;

}
+
class Parent2

{
public:
inty;
public:
void m2()
{

cout<<y<<endl;

h
class Child:public Parentl, public Parent2
{
public:
int z;
public:
void m3()
{

cout<<x+y+z<<endl;

3
int main()

{

40|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

clrscr();
Parentl p1;
Parent2 p2;
Child c;

pl.x=100;
p2.y=200;
€.x=1000;
¢.y=2000;

€.z=3000;

pL.m1();
p2.m2();

c.m3();

getch();

return O;

200
6000

Example:

a41|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<conio.h>
#include<iostream.h>

class Parentl

{
public :
int a;
static int b;
public:
void m1()
{
cout<<a+b<<endl;
}
h
class Parent2
{
public:
int x;
static int y;
public:
void m2()
{
cout<<x+y<<endl;
}
b

class Child:public Parentl,public Parent2

42|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:
int p;
public:
void m3()
{
cout<<x+y+a+b+p;
}
h
int Parent1::Db;
int Parent2:.y;
int main()
{
clrscr();
Parentl p1;
Parent2 p2;

Child c;

pl.a=10;

pl.b=20;

p2.x=100;

p2.y=200;

€.a=1000;

€.b=2000;

3 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

¢.x=3000;
€.y=4000;

€.p=5000;

pl.m1();
p2.m2();
c.m3() ;
getch();

return O;

Such inheritance in which two or more inheritance are involved are called hybrid inheritance.
when two or more inhertance are involved in a single program such program is called

Hybrid inheritance program.

Example:

#include<conio.h>

#include<iostream.h>

44 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

class A

public:
int x;
h
class B:public A
{
public:
inty;
h
class C
{
public:
int z;
h
class D: public B,public C
{
public:
int p;
public:
void m1()
{
cout<<x+y+z+p;
}
h

int main()

45| Page

MOBILE:

+91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

clrscr();
Dd,
d.x=1;
d.y=2;
d.z=3;
d.p=4;

d.m1();

getch();

return O;

Ambiguity problem in multiple inheritance:

When two or parent contain same signature function than child class inherits both classes,
So it contain two copy of same function with same signature. when we call that function with

child class reference variable then compiler will generate an error which is ambiguity
problem.

it mean compiler is in confusion which function will be call.

#include<conio.h>

46 | Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>

class Parentl

{
public:
void m1()
{
cout<<"Parentl m1 function"<<endl;
}
h
class Parent2
{
public:
void m1()
{
cout<<"Parent2 m1 function"<<endl;
}
h

class Child:public Parentl,public Parent2

{
public:

void m2()

{

cout<<"child class function";

}

47 |Page

MOBILE:

+91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

int main()
{
Child c;
clrscr();
Il c.m1();
c.m2();
getch();

return O;

In the above program Parentl and Parent2 contain m1() with same signsture.

When child class try to access m1() then it will generate ambiguity problem.

We can solve ambiguity problem in multiple inheritance by using Scope resolution operator.

We can define which Parent class m1() will be call inside the child class m1();

class Child:public Parentl,public Parent2

{
public:
void m1()
{
Parentl::m1(); //Here Parentl class m1() will be call
¥
h

48 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Program:

#include<conio.h>
#include<iostream.h>

class Parentl

{
public:

void m1()

{

cout<<"Parentl m1 function"<<endl;

+
class Parent2

{
public:

void m1()

{

cout<<"Parent2 m1 function"<<endl;

3
class Child:public Parentl,public Parent2

{
public:

49 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

void m1()
{
Parentl::m1();

Parent2::m1();

}

int main()
{
Child c;
clrscr();
c.ml1();
getch();

return O;

by

Ambiguity Problem in hybrid inheritance:

It can be explain with the help of following Program.

#include<conio.h>
#include<iostream.h>
class GrandParent
{

public:

void m1()

50| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

{
cout<<"Hello"<<endl;
}
h
class Parentl: public GrandParent
{
public:
void m2()
{
cout<<"m2"<<endl,
}
b
class Parent2:public GrandParent
{
public:
void m3()

{

cout<<"m3"<<endl;

}

3
class Child:public Parentl,public Parent2

{
public:

51| Page MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

void m4()

{

cout<<"m4"<<endl;

hg

int main()
{

clrscr();
Child c;
¢.m1();
getch();

return O;

}

In the above program Child class contain two copy of ml() from the path Parentl and
Parent2.

When we try to access m1() with the help of Child class reference variable then compiler

will generate an error(ambiguity problem).

So we can solve the above problem with the help of virtual base class.

At the time of inheritance we inherits the GrandParent as virtual.

So due to this only single copy of GrandParent class function will be delivered to the Child
class directly.

#include<conio.h>

#include<iostream.h>

class GrandParent

52| Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

{
public:
void m1()
{
cout<<"Hello"<<endl;
}
b
class Parentl: public virtual GrandParent
{
public:
void m2()
{
cout<<"m2"<<endl,
}
h
class Parent2:public virtual GrandParent
{
public:
void m3()
{
cout<<"m3"<<endl,
}
h

53| Page MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

class Child:public Parentl,public Parent2
{
public:
void m4()

{

cout<<"m4"<<endl;

h

int main()
{

clrscr();
Child c;
¢.m1();
getch();

return O;

by

Access specifier:

In C++ there are three types of access specifier.
1) public
2) protected

3) private

1) public:

54|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

YES YES YES

Example:

#include<conio.h>

#include<iostream.h>

class A
{
public:
int x;
public:
void m1()
{
cout<<x<<endl;
}
h
class B: public A
{
public:
void m2()
{
cout<<x<<endl;
m1();
}

55|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

b

int main()

{
clrscr();
Aal,;
B bl;
b1.x=1000;
al.x=100;
cout<<al.X;
b1.m2();
getch();

return O;

1000

1000

Example:

#include<conio.h>
#include<iostream.h>

class A

{

56|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:

int x;
public:

void m1()

{

cout<<x<<endl;

h
class B
{
public:
void m2()
{
Aal,;
al.x=10;
cout<<al.x<<endl;

al.ml1();

h

int main()

{
clrscr();
Aal;
B bl;
al.x=100;

cout<<al.x<<endl;

57| Page

MOBILE:

+91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

b1.m2();

getch();

return O;

10

10

Note:

Public member (data member and member function) of a class can be access from any where.

we can access within a class where they are declared, outside the inherited class, and outside
the non

inherit class(but with that class reference variable).

Protected:

We can access protected member of a class,within that class where they are declared and
inside the Child class but cannot access outside the non inherits class.

#include<conio.h>

#include<iostream.h>

class Parent

{

58| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

protected:
int X;
inty;
protected:
void m1()
{
x=10;
y=20;

cout<<x+y<<endl;

h
class Child:public Parent
{
public:
void m2()
{
x=100;
y=200;
cout<<x+y;

m1();

b
int main()

{
Child c;

clrscr();

59| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

c.m2();
getch();

return O;

30

private:
private member of class can be access only within a class outside that class we can not

access private member of that class.

Question: How to access private member outside that class where they are declared?

Ans: we can access private member outside the class by using public function.
#include<conio.h>
#include<iostream.h>
class Parent
{

private:

int x;
public:

void m1()

60| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

x=100;

cout<<x;

int main()

{
Parent p;
clrscr();
cout<<p.x;
p-m1();
getch();

return O;

It is recommanded to declared variable as private and function as public.

By declaring variable as private we can achive data hiding.

Inherits Parent class as public, private and protected:

class Child : public Parent

class Parent

61| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

public:
int X;
protected:
inty;
private:
int z;
public:
void m1()
{
¥

protected:

void m2()

{
k

private:

void m3()

{
¥

class Child : public Parent

{
public:
int a,b;

protected:

62|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

intc;
private:

int d;
public:

void m11(){}
protected:

void m12(){}
private:

void m13(){}

If we inherits Parent class as Public then public member of parent class will goto in public

section of Child class,protected member will goto in protected section of child class but
private

member can not be inherited.

class Child :protected Parent

class Parent
{
public:
int x;
protected:
inty;

private:

63| Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

int z;
public:
void m1()
{
¥

protected:

void m2()

{
¥

private:

void m3()

{
¥

class Child : protected Parent

{
public:

int a,b;
protected:

int c;
private:

int d;
public:

void m11(){}

protected:

64| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

void m120{}

private:

void m13(){}

If we inherits Parent class as Protected, than public and protected member of Parent

class will goto in protected section of Child class.

class Child : private Parent:

class Parent
{
public:
int X;
protected:
inty;
private:
int z;
public:
void m1()
{
}

protected:

void m2()
{

65| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

¥

private:

void m3()

{
¥

class Child : private Parent
{
public:
int a,b;
protected:
int c;
private:
int d;
public:
void m11(){}
protected:
void m12(){}
private:

void m130{}

If we inherits Parent class as private then public and protected member of Parent

class will goto in private section of child class.

66|Page MOBILE: +91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

private member of a Parent can not be inherited even if Parent inherits as public, private or p

protected.

Abstract class:

Such a class in which at least one function which does not have implemention(without body)

such class is known as abstract class.

class Shape

{
public:

void area()=0;

Polymorphism:
The word Polymorphism means having many forms.
The word Polymorphism is drived from two words.

Poly+ Morphism

Poly means many
&

Morphism means forms

67| Page MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

A Person in class room is act as a Student,
Same Person in Family act as Brother or Sister.

Same Person in Sports act as a Sportsman.

Here Same Person have multiple form in different different situation.

This is called Polymorphism.

Polymorphism is an important feature of OOP'S.

In C++ Polymorphism is divided into two Types:

1) Comiple Time / static / Early Binding

2) Run time / Dynamic / Late Binding

1) Comiple Time / static / Early Binding:

If we know at compile time which function will be execute at run time is called

compile time polymorphism.
Example:

a) Function Overloading

b) Operator Overloading

a) Function Overloading:

68| Page MOBILE:

+91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

In function overloading, a class contain more than one same name but different Signature
function

this concept is known as function overloading.

Note:

A class does not contain same signature function. if we try to declare the
we will get compile time error.

Which m1() function will be execute it will be deside at compile time.

so it is known as compile time or static or early bind.

Example:
#include<conio.h>
#include<iostream.h>
class Test
{

public:

int x;
public:
void m1()

{

cout<<x<<endl;

}

void m1(int a)

{

69| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<x+a<<endl;
}
void mi(int a,int b)

{

cout<<a+b+x<<endl;

b

int main()

{
Test t;
clrscr();
t.x=10;
t.m1();
t.m1(100);
t.m1(100,200);
getch();

return O;

}
b) Operator Overloading:

In operator overloading we can assign some special meaning to an operator is known as
operator overloading.

Example:

We known that plus + operator add two number but in c++ we can assign some extra work to

70| Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

plus operator. Due to extra work plus operator is overload.

return type class-name:: operator op-sign(list of parameeter)

{
// body

Rules for operator overloading:

1) we can not overload class member access operator (., .*)

Scope resolution operator(::)

sizeof operator

Conditional operator(?:)
2) Only C++ existing operators can be overloaded. new operator can notbe overloaded.
3) We cannot change the basic meaning of an operator.

4) We can not use following operators with friend keyword (=,(),[],->)

Overloading Unary Operator:

#include<conio.h>
#include<iostream.h>

class Test

{
public:

71| Page MOBILE: +91-7500700886

CraSR I xWeb

SOFTWARE TRAINING AND DEVELOPMENT

int x,y,z;
public:
void getData()
{
cout<<x<<" "<<y<<" "<<z;
¥
void operator -()

{

X=-X;

Cout<<"D0ne";

h

int main()

{
Test t;
t.x=10;
t.y=-20;
t.z=30;

-t,
t.getData();
getch();

return O;

72|Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

Done -10 20 -30

Example:

class Test
{
public:
int x,y;
public:
void operator ++();
h
void Test:: operator ++()
{
X=X+5;
y=y+10;
}
int main()
{
Test t;
t.x=10;

t.y=20;

t++:

73| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

+H;

getch();

return O;

¥
Overloading Binary Operator:

#include<conio.h>
#include<iostream.h>
class Complex
{
public:
float x;
float y;

Complex()

{

}
Complex(float r,float i)

{
X=r,
y=i;
}

Complex operator +(Complex c4)

{

c4.x=x+c4.x;

74| Page

MOBILE:

+91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

cd.y=y+cd.y;
return c4;
}
void display()
{

cout<<x<<"+i"<<y<<endl;

I¢
int main()
{
Complex ¢1(2.5,3.5),c2(1.6,1.7),c3;
clrscr();
c3=cl+c2;
cl.display();
c2.display();
COUt<<"-mmmme "<<endl;

c3.display();

getch();

2.5+i3.5

1.6+i1.7

75|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

4.1+i5.2

Assignment:
WAP to find the product of two complex number.

WAP to add the two time(5:20+4:10=9:30).

#include<conio.h>
#include<iostream.h>
class Test
{

public:

int x,y;

Test operator -(Test);
j
Test Test:: operator -(Test t)
{

t.X=X+t.X;

ty=y-ty;

return t;

int main()

76 | Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Test t1,t2,t3;
clrscr();
t1.x=10,t1.y=20;

t2.x=1,t2.y=2;

t3=t1-t2;
cout<<t3.x+t3.y;
getch();

return O;

}
Pointer: Pointer is a variable which hold the address of another variable.

Syntax:
<pointer-Type> * <pointe-name>;
E.g:

int *p;

int x=10;

P=&X;

Note: We can access value of x directly or by using pointer.

#include<conio.h>
#include<iostream.h>

int main()

77| Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

int x=10;
int *p;

clrscr();

p=&X;

cout<<x<<endl;
cout<<*p<<endl;
cout<<p;

getch();

return O;

Note: We can incement/ decrement in pointer.

#include<conio.h>
#include<iostream.h>
int main()
{

int x=10;

int *pl,**p2;;

clrscr();

pl=&Xx;

78| Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

p2=&pl;

cout<<"pl address="<<pl<<endl;

cout<<"p2 address="<<p2<<endl;

pl=pl+2;

cout<<"pl address after increment="<<pl<<endl,

p2=p2+2;

cout<<"p2 address after increment="<<p2;

getch();

return O;

by

#include<conio.h>
#include<iostream.h>
int main()
{

int x=10;

int *pl,**p2,***p3;

clrscr();

pl=&Xx;
p2=&pl;

p3=&p2;

79|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"p1l hold address="<<pl<<endl,
cout<<"p2 hold address="<<p2<<endl,

cout<<"p3 hold address="<<p3<<endl;

pl=pl+2;

cout<<"pl address after increment="<<pl<<endl,

p2=p2+2;

cout<<"p2 address after increment="<<p2<<endl;

p3=p3+1,;
cout<<"p3 address after increment="<<p3<<endl;
getch();

return O;

Pointers with Array:
#include<conio.h>
#include<iostream.h>
int main()
{

int X[50],*p,n,i,sum=0;

cout<<"Enter the no of elements in array"<<endl;

80|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

cin>>n;

for(i=0;i<n;i++)
{

cin>>x[i];

P=X;

for(i=0;i<n;i++)
{
if(*p%2==0)

sum=sum + *p;

p++;

by

cout<<sum<<endl;
getch();

return O;

Array of Pointer:

#include<conio.h>

8l|Page

MOBILE:

+91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>
int main()

{
int *p[5],azlo,bZZO’C:BO’d:40,e:50’**p1;

clrscr();

p[0]=&a;
p[1]=&b;
p[2]=&c;
p[3]=&d;
pl4]=&e;

pl=p;

cout<<**p1,;
pl++;

pl++;
cout<<**p1;
getch();

return O;

Example:

82|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<conio.h>

#include<iostream.h>

int main()

{

int *p[3],a[3]={10,20,30},b[4]={1,2,3,4}.c[2]={6,9},**p1;

clrscr();
p[0]=4;
p[1]=b;
p[2]=c;

pl=p;

pl++;
(*pl)++;
(*pl)++;

**p1=10;

cout<<*((*pl)++)<<endl;

cout<<**p1;
getch();

return O;

Pointers to Objects:

83|Page

MOBILE:

+91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<conio.h>
#include<iostream.h>
class Test
{
public:
int x,y;
public:
void m1()

{

cout<<x+y<<endl;

h

int main()

{
Test t;
Test *p;
clrscr();

p=&t;

p->x=10;

p->y=20;

t.x=100;
t.y=200;

84|Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

p->m1();

getch();

A class Type Pointer can access class member by using arrow operator or Object Pointer.

There are following ways to access class members:

1)p->x=10;

p->y=20;

2)(*p).x=1000;

3)t.x=100;

t.y=200;

We can assign an address of object in two ways:

D)Test t;

Test *p;

p=&t;

2) Test *p=new Test;

85|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Note: new keyword is used to assign memory to an object.

#include<conio.h>
#include<iostream.h>
class Test
{
public:
int x,y;
public:
void m1()

{

cout<<x+y<<endl;

Y
int main()

{

Test *p=new Test[5];

inti;

clrscr();

Test *pl=p;

86|Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

for(i=0;i<5;i++)
{
cout<<"enter the value of x and y";
cin>>pl->x;
cin>>pl->y;
pl++;
¥
p1=p;
for(i=0;i<5;i++)
{
pl->m1();

pl++;

getch();

Enter the value of x and y 10 20
Enter the value of x and y 20 30
Enter the value of x and y 30 40
Enter the value of x and y 40 50
Enter the value of x and y 50 60
30

87|Page MOBILE: +91-7500700886

Clﬁjx Web

SOFTWARE TRAINING AND DEVELOPMENT

50
70
90
110

WAP, you have 10 Items(T-shirt, Lower, Book, TV etc) which have following field
Item id, Item name, item price, congiguration.

To print the Item detail by Item id.

this pointer:

"this" is a pointer, which is used inside the class only outside the class we cannot use this
pointer.

this pointer is used to represent current class members(data member & member function).

We not need to create this pointer it is automatically created by compiler.

Example:
#include<conio.h>
#include<iostream.h>
class Test
{
public:
int x;

public:

88|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

void m1()
{
this->x=100;

cout<<x<<endl;

b
int main()
{
Testt;
clrscr();
/[this->x=1000; // this can be used within member function(class)
t.m1();
getch();

return O;

#include<conio.h>
#include<iostream.h>
class Test
{
public:
int x;
public:

Test(int x)

89|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

this->x=x;
}

void m1()

{

cout<<x<<endl;

b

int main()

{
Test t(100);
clrscr();
/1 this->x=1000;
t.m1();
getch();

return O;

this pointer is used to hide local variable, if both instance and local variable have same name.

Example:

We can return this pointer also , which is explain in the below program

#include<conio.h>

#include<iostream.h>

9 |Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

class Test
{
public:
int x,y;
public:
Test & m1()
{
this->x=10;
this->y=20;

return *this;

h
int main()
{
Test t,p;
clrscr();

/1 this->x=1000;
p=t.m1();
cout<<p.x+p.y<<endl,

getch();

return O;

Function Overriding:

91|Page MOBILE: +91-7500700886

Clﬁjx Web

SOFTWARE TRAINING AND DEVELOPMENT

When Child class is not satisfy with Parent class member function

then child can change parent class member function internal implementation.
This concept is known as function Overriding.

For overriding inheritance is compulsary.

Parent class member function signature must be matched with Child class member function.

#include<conio.h>
#include<iostream.h>

class Parent

{
public:
void property()
{
cout<<"Cash Gold Silver Power"<<endl;
}
void marry()
{
cout<<"Aarti"<<endl,
}
h
class Child : public Parent
{
public:

void marry()

{

92| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"Pooja Cash Diamond Gold Power"<<endl,

3
int main()
{

Parent p;

Child c;

p.property();
p.marry();

c.property();
c.marry();

getch();

Note: which marry function will be execute it we will be deside at runtime. So it is called
Runtime polymorphism.

In the above program Child class marry() override the Parent class marry() at runtime(When
Program

is executed.).

Virtual function:

#include<conio.h>

93| Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>

class Parent

{
public:

void property()
{

cout<<"Cash Gold Silver Power"<<endl:

}

void marry()

{

cout<<"Aarti"<<endl;

Y
class Child : public Parent

{
public:

void marry()

{

cout<<"Pooja Cash Diamond Gold Power"<<endl;

3
int main()

{
// Parent p;

/1 Child *c1,

9 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Parent *p;

Child c1;

clrscr();

/[c1=&p; invalid

p=&cl;
p->property();

p->marry();

cl.property();
cl.marry();

getch();

Parent class Pointer can hold Child class object address. but Child class Pointer

can not hold Parent class Object address.

Example:

#include<conio.h>

95|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>

class Parent

{
public:
void property()
{
cout<<"Cash Gold Silver Power"<<endl;
}
void virtual marry()
{
cout<<"Aarti"<<endl;
}
h
class Child : public Parent
{
public:
void marry()
{
cout<<"Pooja Cash Diamond Gold Power"<<endl;
¥
b
int main()
{
Parent *p;
Child c1;

9% |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

clrscr();

p=&cl,

p->property();

p->marry();

cl.property();

cl.marry();

getch();

If you want at access Child class function (marry()) with Parent class pointer(hold the address
of

Child class) then you must be declared Parent class Function(marry()) as virtual.
Then that Child class marry() will be execute. It will be deside at Runtime which marry()

will be execute So virtual is an example of Runtime polymorphism.

Constructor in Derived classes:

Question : How to call Parent class Constructor without creating Parent class Object.

97 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<conio.h>
#include<iostream.h>
class Parentl
{
public:
int X;
public:
Parent1(int a)
{
X=a;

cout<<x<<endl;

h
class Parent2
{
public:
inty;
public:
Parent2(int b)
{
y=b;

cout<<y<<endl;

3
class Child:public Parent2,public Parentl

98 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

public:
int z;
public:
Child(int a,int b,int c):Parent1(a), Parent2(b)
{
z=Cc;

cout<<z<<endl;

h
int main()
{

clrscr();
Child ¢(10,20,30);

getch();

Note: First Constructor of Parent class will be execute which inherits Child class firstly.

Example:

#include<conio.h>
#include<iostream.h>

class Parentl

{

99 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

public:
Parentl()
{
cout<<"Parentl cons"<<endl;
¥
b
class Parent2
{
public:
Parent2()
{
cout<<"Parent2 cons"<<endl;
}
h

class Child:public Parentl, public Parent2
{

public:
Child()
{
cout<<"Child cons"<<endl;
}
j3
int main()
{
clrscr();

100 |Page

MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

If we inherits Parent class as virtual then virtual Parent class constructor will be execute

firstly, and sequence of inheritance by child class does not metter.

Question : Explain virtual keyword in detail?

Managing 1/0 Operations:

Stream:

Flow of bits from input to program and Program to output device is known as bit stream.

Input Stream:

Flow of bits/bytes from input device to Program by using extraction operation

is known as input stream.

Output Stream:

Flow of bits/bytes from Program to output device by using insertion operation

is known as output stream.

101 |Page MOBILE: +91-7500700886

Clﬁjx Web

SOFTWARE TRAINING AND DEVELOPMENT

C++ Stream classes:

This is the Parent class of all stream classes.
This class contains some basic facilities that are used in input/output

operation.

istream class:

istream class is the child of ios class.

It contain some basic input function such as:
get(), getline() and read().

It contain overloaded extraction operator >>

ostream:

ostream class is the child of ios class.
It contain some basic output function such as:
put() write().

It contain overloaded insertion operator <<.

iostream:

This class inherits the istream and ostream classes.

102 |Page MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

It inherits all fucntionality of istream and ostream class.

and insertion and extraction operator also.

streambuf:

It is the child of ios class.
It works between physical device(input/output device) and Program which

store the no of bits/bytes.

Note:

cin and cout are object of input and output stream classes.

cin >> x;

">>" is an overloaded extraction operator which is define inside the istream class.

out << "Hello™;

"<<"is an overloaded insertion operator which is define inside the ostream class.

get() and put() :

get() is present inside the istream class. which handle the single character input operation.
By using cin object of itream class we can access get().

We can explain with the help of following Program.

103 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>
#include<conio.h>
int main()
{

char c;

clrscr();

cin.get(c); // cinis an object of istream class and we try to access get() od istream class by
using cin object.

cout<<c;

getch();

Example:
#include<iostream.h>
#include<conio.h>
int main()
{

char c;

clrscr();

cin.get(c);

while(c!="\t")

{

104 |Page MOBILE: +91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"Print: "<<c<<endl;

cin.get(c);

getch();

So we have two ways to get the characater from the keyboard.
a) cin>>c; by using overloaded extractor opearator we can get single char from the keyboard

b)cin.get(c); by using get() of istream class object.

put() is present inside the ostream class.
By using put() we can print the single character on the sceeen.

By using cout object of ostream class, we can access put().

#include<iostream.h>
#include<conio.h>
int main()
{

char c;

clrscr();

105|Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cin.get(c);

while(c!="\t")
{
cout.put(c);

cin.get(c);

getch();

So we have two ways to display a single character on the screen.
cout<<c;
cout.put(c);

getline() and write():

-->getline() is present in istream class/iostream.
-->getline() read the whole line including white space from the keyboard.

while cin object read only single word if any white space occurs then it will stop read

106 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

the characters.

Program Without geline():

#include<conio.h>
#include<iostream.h>
int main()
{
char name[20];
clrscr();
cout<<"Enter the name:";
cin>>name;
cout<<name;

getch();

Enter the name: Mr amit kumar

Mr

Program with getline():

#include<conio.h>
#include<iostream.h>

int main()

107 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

char name[20];

clrscr();

cout<<"Enter the name:";
cin.getline(name,10); //cin>>name;

cout<<name;

getch();

Enter the name: Mr amit kumar

Mr amit kumar

write() is used to display whole line at a time, on the console(output screen)
write() is present inside the ostream/iostream.
write() accept two parameters, one is array of char type and second parameter is size which

you want to print.

e.g:

cout.write(name,10);

108 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Program:

#include <iostream>

int main()

{
/I clrscr();

char name[20];

std::cout<<"enter the name =";

std::cin.getline(name,20);

std::cout.write(name,10);

return O;

by

File Handling:

File is a storage area where we can store data permanently.

109 |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

File is store in secondary memory. Secondary memory store data
permanently.

Where as main memory store data temporary.

File Handling:

We can perform lots of operation on a file such as open a file, close a file, insert data
into the file, update data to the file, delete data from the file and fatch the data from
the file.

So we need to handle such operation on a file, need a programming language.

By using C++ we can handle a file.

File Stream classes:

It provides some basic function which are applied to a file such as

open() and close() etc.

2) ifstream:

It provide such basic functions such as open(), close(), get(), getline(), read() seekg()

tellg() etc.

3) ofstream:

110 |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

It provides functions such as open() close() put() tellp() seekp() write().
Open a file:

To load a file from harddrive to main memory(RAM) is known as
open a file.

there are two ways to open a file.

1) Open a file by using open():

2) Open a file by using constructor of fstream/istream/oftream.

Note: If you want to perform read/write operation on a file you must be include fstream.h

----- header file.

1) Open a file by using open():

syntax:

open("File Path",mode);

E.g:

open("D:/abc/first.txt",ios::out);

-->First parameter of open function specify the address(Location) of opened file.
-->Second parameter of open() specify the mode in which you want to open.

there are following modes are possible in c++.

111 |Page MOBILE: +91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

10S::app:
i0s::app denotes to open a file in append mode it means new data will be add to the old
data into the file.

If file is not exist in the HardDrive then append mode will create a new file.

#include<fstream.h>
#include<conio.h>
#include<iostream.h>
int main()
{

fstream f;

clrscr();

f.open(*aryan.txt",ios::app);

f<<"C++ Programmer™;
f.close();

getch();

i0s::out:

ios::out denotes to write some data into the file, if old data is available inside the file then it
will replace old data with new data into the file.

112 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

If file is not exist in harddrive then it will create a new file.

#include<fstream.h>
#include<conio.h>
#include<iostream.h>
int main()
{

fstream f;

clrscr();

f.open("aryan123.txt",ios::out);

f<<"Java Program";
f.close();

getch();

This mode is used to read some data from the file.

if file is not exist then compiler will not create a file.

#include<fstream.h>

#include<conio.h>

113 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<iostream.h>
int main()
{

fstream f;

int x;

clrscr();

f.open("aryan123.txt",ios::in);

f>>x;
cout<<x;
f.close();

getch();

ios::ate:

Open the file and moves the control to the end of the file.

ios::trunc : This mode will remove all data in the existing file.

This mode open the file if file is already exists.

If file does not exist then it will not create a new file.

114 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

i0s::noreplace:

This mode open the file only if it does not already exist.

i0s::binary:

We can apply more then one mode on a same file by using parllel operator(])

Program 1.
#include<fstream.h>
#include<iostream.h>
#include<conio.h>
int main()
{
fstream inf;
int X,y;
clrscr();
inf.open(*'sun.txt",ios::out);
cout<<"Enter the value: *;

cin>>x;

115 | Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

inf<<x*5;

inf.close();

fstream outf;

outf.open("'sun.txt",ios::in);

outf>>y;

cout<<"New Value is: "<<y*3;

outf.close();

getch();

WAP to open a file both in read/write mode:

#include<fstream.h>
#include<iostream.h>
#include<conio.h>
int main()
{

fstream inf;

int X,y;

clrscr();

inf.open("'sun.txt",ios::out | ios::in);

116 |Page MOBILE: +91-7500700886

Clﬂjx Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"Enter the value: ";

cin>>x;

inf<<x*5<<endl;

inf.seekg(0);

inf>>y;

cout<<"New Value is: "<<y*3;

inf.close();

getch();

Assignment:

Copy one file content to another file.

2) Open a file by using constructor of fstream/istream/oftream.:

We can open a file by using ifstream or ofstream class constructor.
if we open a file by using ifstream class constructor then we can perform read operation

from the file.

if we open a file by using ofstream class constructor then we can perform write operation

117 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

into the file.

Program 1:
#include<fstream.h>
#include<iostream.h>
#include<conio.h>
int main()
{
ofstream outf("'shopitem.txt");
char name[20],resname[20];

int price,resprice;

clrscr();

cout<<"enter the item name";

cin>>name;

outf<<name;

OUtf<<" n;

cout<<"enter the Price:";

cin>>price;

outf<<price;

outf.close();

118 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

ifstream inf(*'shopitem.txt");

inf>>resname;

inf>>resprice;

cout<<resname<<"\t"<<resprice;

getch();

}

Functions for manipulation of File pointers.

There are following functions which are used to check and change pointer

position into the file.

It moves and get pointer(input) to a specified location.

#include<fstream.h>
#include<iostream.h>
#include<conio.h>
int main()

{

ofstream outf("'shopitem.txt"™);

119 | Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

char name[20],resname[20];

int price,resprice;

clrscr();

cout<<"enter the item name";

cin>>name;

outf<<name;

Outf<<|| ||;

cout<<"enter the Price:";

cin>>price;

outf<<price;

outf.close();

ifstream inf(*'shopitem.txt™);

inf.seekg(4);

inf>>resprice;

cout<<"LCD Price is : "<<resprice;

getch();

120 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

enter the item nameLCD
enter the Price:2300

LCD Priceis : 2300

It moves and get the pointer(write) to specified location.
#include<fstream.h>
#include<iostream.h>
#include<conio.h>
int main()
{
ofstream outf("'shopitem.txt");
char name[20],resname[20];

int price,resprice;

clrscr();
cout<<"enter the item name";

cin>>name;

outf<<name;
OUtf<<" n;
cout<<"enter the Price:";

outf.seekp(1);

121 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cin>>price;

outf<<price;

outf.close();

ifstream inf(*'shopitem.txt");

inf>>resprice;

cout<<"LCD Price is : "<<resprice;

getch();

enter the item nameLCD
enter the Price:2300

LCD Priceis: 0

Note: Inside the file content will be "L2300".

tellg():

122 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

This function is used to give the current position of the pointer inside file. When file is
opened in read mode.

#include<conio.h>
#include<iostream.h>
#include<fstream.h>
int main()
{

int p;

char msg[20];

clrscr();

ifstream inf("abcd.txt");

inf.seekg(4);

p=inf.tellg();

cout<<p<<endl;

inf>>msg;

cout<<msg<<endl;

p=inf.tellg();

cout<<p;

getch();

123 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

This function is used to give the current position of the pointer inside file. When file is
opened in write mode.

#include<conio.h>
#include<iostream.h>
#include<fstream.h>
int main()
{

int p;

char msg[20];

clrscr();

ofstream ofs("abcd.txt");

ofs<<"Welcome C++";

p=ofs.tellp();

cout<<p;

ofs.seekp(4);

124 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

ofs<<"done";

cout<<p;

getch();

put() and get() function:

put():

put() is used to put a character into the file.

We can write only one character at a time.

get() is used to get a single character at a time from the file.

we can read only single character at a time.

Program:

125 | Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<conio.h>
#include<iostream.h>
#include<fstream.h>
#include<string.h>
int main()
{
char name[20];
inti,l;
char ch;
clrscr();
cout<<"Enter the name";

cin>>name;

I=strlen(name);

fstream f;

f.open("getputfile.txt",ios::in | ios::out);

for(i=0;i<l;i++)
{
f.put(nameli]);

}
f.seekg(0);

while(f)
{

126 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

f.get(ch);
cout<<ch;

¥
getch();

write() and read() function:

This function is used to write data in binary format and store data in binary format.

This function is avaliable in ofstream class.

outfile.write((char *) &v,sizeof(v));

This function is used to read data from the file which is stored in binary format.

This function is available in ifstream class.

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
int main()

{

127 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

int v=10,u;
clrscr();
ofstream of;

of.open("az.txt");

of.write((char *)&v,sizeof(v));

of.close();

ifstream ifs;

ifs.open("az.txt");

ifs.read((char *)&u,sizeof(u));

cout<<u;

getch();

}
How to save object into the file and read object from the file.

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
class Test
{

public:

int x,y;

128 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

public:
void display()
{

cout<<x<<endl;

cout<<y<<endl;

j
int main()

{
Test t,t1;

ofstream outfile;
outfile.open("myfile.txt",ios::out);
t.x=100;

t.y=200;

outfile.write((char *)&t,sizeof(t));

outfile.close();

ifstream infile;

infile.open("myfile.txt",ios::in);

infile.read((char *)&t1,sizeof(t1));

t1.display();

infile.close();

129 |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

getch();

--> By using write() we can save an object into the file.

The Process of saving object into the file is called serialization.
-->By using read() we can read object from the file.

The process of read object from the file is called deserialization.

-->0bject are always stored into the file in binary format.

Error handling Function:

eof() return true if end-of-file is encountered while reading,

otherwise it return false.

it return true if no error in the file read and write operation.

bad():

130|Page MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

it return true if an invalid operation attempted.

Exception Handling:

An Exception is an unwanted unaspected event which disturb the normal flow of a program is
called exception, Due to an exception your program will terminate abnormally. So we need to

protect our program for abnormal termination.

int main()

{
int x=10,y=0;
cout<<x/y;
getch();

}

In the above program at line cout<<x/y; program will terminate abormally.

Exception Handling:
To protect program for abnormal termination, we will use try-catch block.
Inside the try block we put the risky code or such lines of code which may genrate exception.

If any exception is arise in try block the it will throw by using throw keyword and will catch
in catch block.

Syntax:

131 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

Il risky code

}
catch(data-type)

{
//Handling code

}

Example:

// Online C++ compiler to run C++ program online

#include <iostream>

int main() {

int x=10,y=0;

try

{
if(y==0)
{

throw y;

else

132 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

std::cout<<xly;

¥

catch(int a)

{

std::cout<<"Dont divide by zero";

return O;

// Online C++ compiler to run C++ program online

#include <iostream>

int main() {
int x,y;
std::cout<<"Enter first number";
std::cin>>Xx;
std::cout<<"Enter second number";
std::cin>>y;
try
{
if(y==0)
{

throw y;

133 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

else

std::cout<<xl/y;

ks

catch(int a)

{

std::cout<<"Dont divide by zero™;

return O;

try with multiple catch block:

There may be a chance of try block contains more than one exception than that case

we will use multi catch blocks to handle each exception.

/Irisky code

134 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

}
catch(typel)

{

}
catch(type2)

{
k

catch(typeN)

Program:

// Online C++ compiler to run C++ program online

#include <iostream>

int main() {

test(10);

return O;

}

void test(int x)

{

135|Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

try

if(x==0)

throw Xx;

}
else if(x==1)
{
throw 'a’;
}
else if(x==-1)

{
throw 10.5;

else

std::cout<<x+x;

}
catch(int p)

{

std::cout<<"Dont take value is zero";

}
catch(char q)

{

std::cout<<"Dont take value is one";

136 |Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

¥
catch(double r)

{

std::cout<<"Dont take value is -1";

Program:

// Online C++ compiler to run C++ program online

#include <iostream>

int main() {

test(10);
return O;
k
void test(int x)
{
try
{
if(x==0)
{

throw X;

¥

else if(x==1)

137 |Page

MOBILE:

+91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

throw 'a’;
}
else if(x==-1)

{
throw 10.5;

else

std::cout<<x+x;

}
catch(int p)

{

std::cout<<"Dont take value is zero";

}
catch(char q)

{

std::cout<<"Dont take value is one";

by

catch(double r)

{

std::cout<<"Dont take value is -1";

}
Output:

138 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Dont take value is one
Dont take value is zero

20

If exception handling there is possible to handle more than one exception
into single catch block. This can be done with catch(...).

Syntax:

Program:

// Online C++ compiler to run C++ program online
#include <iostream>

void test(int x)

{

139 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

try

if(x==0)

throw Xx;

¥
else if(x==1)
{
throw 'a’;
¥
else if(x==-1)

{
throw 10.5;

else

std::cout<<x+x;

¥
catch(...)

{

std::cout<<"Please Check your Code";

¥

int main() {

140 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

test(1);
test(0);
test(10);

return O;

Please Check your Code
Please Check your Code

20

After catch(...), not takes any catch block because catch(...) is last handler block.

// Online C++ compiler to run C++ program online
#include <iostream>
void test(int x)
{
try
{
if(x==0)
{

throw Xx;

141 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

}
else if(x==1)
{
throw 'a’;
}
else if(x==-1)

{
throw 10.5;

else

std::cout<<x+x;

¥
catch(...)

{

std::cout<<"Please Check your Code";

¥

catch(int x)

{

std::cout<<"Wrong int";

}

int main() {

142 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

test(1);
test(0);
test(10);

return O;

error: "..." handler must be the last handler for its try block

But we can put any number of catch block before catch(...).

// Online C++ compiler to run C++ program online
#include <iostream>

void test(int x)

{
try
{
if(x==0)
{
throw Xx;
k
else if(x==1)
{
throw 'a’;
k

else if(x==-1)

143 |Page MOBILE: +91-7500700886

Clﬂix Web

SOFTWARE TRAINING AND DEVELOPMENT

throw 10.5;

else

std::cout<<x+x;

}

catch(int x)

{

std::cout<<"Wrong int";

}
catch(...)

{

std::cout<<"Please Check your Code";

¥

int main() {

test(1);
test(0);
test(10);

return O;

144 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

Please Check your Code
Wrong int

20

Specify Exception:

It is possible to restrict a function to throw only certain specifed exception.

This can be achived by adding throw list in a function.

function(arg-list) throw (throw-list)

{
/[function body

¥

Program:

// Online C++ compiler to run C++ program online

#include <iostream>

void test(int x) throw(int,double)

{

145 | Page MOBILE:

+91-7500700886

Clﬁix Web

SOFTWARE TRAINING AND DEVELOPMENT

if(x==0)
{

throw 'a’
}
else if(x==1)

{

throw X;

}
else if(x==-1)

{
throw 1.5;

else

std::cout<<x*x;

int main() {

try
{
test(0);

¥

catch(char ch)

146 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

std::cout<<"char catch block™:

ks

catch(int z)

{

std::cout<<"int catch block™:

}
catch(double d)

{

std::cout<<"double catch block";

return O;

¥
output(Online Compiler):

terminate called after throwing an instance of 'char’
Aborted

Rethrowing an Exception:

It may be possible handler code(in catch block) can rethrow an exception.

In such situations, we can write only throw without argument in catch block.

Program:

/I Online C++ compiler to run C++ program online

147 |Page MOBILE: +91-7500700886

Clﬂfx Web

SOFTWARE TRAINING AND DEVELOPMENT

#include <iostream>

void divide(double x,double y)

{
try

{
if(y==0.0)

{

throw y;

else

std::cout<<xl/y;

¥
catch(double z)

{

std::cout<<"divide function try catch™;

throw;

}

int main() {
try

{
/1 divide(10.5,2.0);

148 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

divide(20.0,0.0);

k
catch(double)

{

std::cout<<"main try catch block";

}

return O;

String

A string is a sequence of character or set of characters.

We can create a string in c++ in two ways.

1) by using array of characters which always terminated by null character (\0").
E.g:

char name[20];

2) by creating string class object we can create a string.

E.g:

string s("abcd™);

149 |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

string conecpt is come in ANSI C++.

We can perform following operation on a string.

a) Creating a String and display a string.
b) Modify the existing string.

) comparing two strings.

d) Finding a substring from a string.

e) Add two string

f) Find the size of string.

string class contain three constructors:

A)string(); it will create empty string

B)string(char *str) It will create a string which terminated by null character(\0').

C)string(string &s) It will create a string from another string.

string class contains some functions:

append() append() is used to appends a part of string to another.

Assign() Assigns a partial string.

at() at() is used to obtain a character at perticular location.
begin() It return the address of string first character location.

capacity() capacity() is used to gives the total size.

150 |Page

MOBILE:

+91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

compare() compare() is used to compare two string

empty() it return true if string have some characters otherwise it will return false.

end() It return the address of string's last character location.

erase() It removes the characters from the string.

find() searchs for the occurence of a specfied substring.

insert() inserts characters at a specified location.
length() Gives the number of elements in a string.
replace() Replace the characters with new string.

swap() it will swap to substring to ecah other.

Operators for string class object:
= assignment

+ concate

+= concate assignment

== equality

1= not equality

< Less than

> greater than

<= Less than equal to

>= Greater than equal to.

etc..

Create string class object:

i) string s1; It will create empty string.

ii) string s2("india");

151 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

iii) s1=s2;
iv) cin>>s1; Read only one word from the keyboard

V) getline(cin,s1) Read the whole line from keyboard with space.

Manipulate String Object:

We can modify String class object by using insert(), replace(), append() erase() etc.
#include <iostream>
#include<string>
int main() {
std::string s1("12345");
std::string s2("abcde™);
sl.insert(4,s2) ;

std::cout<<sl<<"\n";

return O;

1234abcde5

152 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include <iostream>
#include<string>
int main() {

std::string s1("12345");

std::string s2("abcde");

sl.insert(4,s2) ;

std::cout<<sl<<"\n":

sl.erase(4,5);
std::cout<<sl<<"\n";

return O;

1234abcde5

12345

#include <iostream>
#include<string>
int main() {

std::string s1("12345");

std::string s2("abcde");

153 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

sl.insert(4,s2) ;

std::cout<<sl<<"\n";

sl.erase(4,5);

std::cout<<sl<<"\n":

s2.replace(1,2,s1);
std::cout<<s2;

return O;

1234abcde5
12345

al2345de

// Online C++ compiler to run C++ program online
#include <iostream>
#include<string>
int main() {
std::string s1("ABC");
std::string s2("XYZ");

std::string s3=s1+s2;

154 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

if(s1!=s2)
{
std::cout<<"sl is not equal to s2"<<"\n";
}
if(s3==s1+s2)
{
std::cout<<"s3 is equal to s1+s2"<<"\n";
}
int x=s1.compare(s2);
if(x==0)
std::cout<<"s1==s2";
else if(x>0)
std::cout<<"s1>s2";
else

std::cout<<"sl1<s2";

/I Online C++ compiler to run C++ program online

#include <iostream>

155 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include<string>

int main() {
std::string s1("APPLY™);
std::string s2("APPLY™);

std::string s3=s1+s2;

if(s1!=s2)
{

std::cout<<"s1 is not equal to s2"<<"\n";

¥
if(s3==s1+s2)

{

std::cout<<"s3 is equal to s1+s2"<<"\n";

}

int x=s1.compare(s2);

if(x==0)
std::cout<<"s1==s2";

else if(x>0)
std::cout<<"s1>s2";

else

std::cout<<"sl1<s2";

s3 is equal to s1+s2

156 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

§1==s2

#include <iostream>
#include<string>
int main() {

std::string s1;

std::cout<<sl.size()<<"\n";
std::cout<<sl.length()<<"\n";
std::cout<<sl.capacity()<<"\n";
std::cout<<sl.max_size()<<"\n";

std::cout<<sl.empty()<<"\n";

15
4611686018427387903

1

WAP to find the number of character in a file.

WAP to replace word "is" to "are™ in a given file.

Accessing Char in String:

157 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

at(),substr(),find(),find_first_of(), find_last_of().
#include <iostream>

#include<string>

int main() {

std::string s("ONE TWO THREE");

for(int i=0;i<s.length();i++)

{

std::cout<<s.at(i)<<"\n";

return O;

—

158 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

#include <iostream>
#include<string>
int main() {

std::string s("ONE TWO THREE");

int x = s.find("HREE");

std::cout<<x<<"™\n";

std::cout<<s.substr(1,6)<<"\n";

int x1 = s.find_first_of('T");

int x2 = s.find_last_of('T");

std::cout<<x1l<<"\n";

std::cout<<x2;

return O;

159 |Page MOBILE: +91-7500700886

Clﬁx Web

SOFTWARE TRAINING AND DEVELOPMENT

NE TWO

friend function:

We know that we can not access private variables outside the class,

but by using friend function we can access private member outside the class.
By using friend keyword we can declare a function as firendly.

A friend function is not a member of any class. But it can access all members of a class.

Properties of friend function:

->|t is not in the scope of a class whatever it is declare inside the class.
->|t can not be called by using the object of that class.
->1t will be call like a normal function.

->|t can be declare either in public or private or protected section in a class.

#include<conio.h>
#include<iostream.h>
class Sample
{

int a,b;

public:

void setValue()

{

160 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<"enter the value of aand b: ";

cin>>a>>b;

}

friend int avg(Sample s);
Y
int avg(Sample s)

{

return (s.a+s.b)/2;
}
int main()
{
Sample si;
clrscr();
sl.setValue();
cout<<avg(sl);

getch();

enter the value of a and b: 10 20
15

A friend function of two classes:

#include<conio.h>

#include<iostream.h>

161 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

class Army;
class Manager
{
int x;
public :
void setValue(int i)
{
X=i;
}
friend void max(Manager,Army);
b
class Army
{
inty;
public:
void setValue(int i)
{
y=i;
}

friend void max(Manager,Army);

void max(Manager m,Army a)

{

if(m.x>=a.y)

{

162 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<m.x;

else

cout<<a.y;

ks

int main()

{

Manager mag;
Army ar;

clrscr();
mag.setValue(12);

ar.setValue(14);

max(mag,ar);

getch();

/IWAP to find the simple interest of Manager and Army Person by using freind function.

Inline function:

163 |Page MOBILE: +91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

An inline function is a function that is expended in line, When we call a function

then compiler replaces the function call to the function body.

By using inline keyword we can declare a function as inline.

Inline function makes a program run faster.

syntax

inline function-name()

{
//function body

#include<conio.h>
#include<iostream.h>
inline float multi(float x,float y)

{

return x*y;

¥

inline float divide(float x, float y)
{

return x/y;

}

int main()

{
float a=12.5;

float b=2.5;

164 |Page

MOBILE:

+91-7500700886

Cl&x Web

SOFTWARE TRAINING AND DEVELOPMENT

cout<<multi(a,b)<<endl;
cout<<divide(a,b)<<endl;

getch();

Note: In the above program multi() function call will be replace with multi function code.

In the above program divide() function call will be replace with divide function code.

The End

165 | Page MOBILE: +91-7500700886

